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Abstract

This thesis aimed at the improvement of a generic API production process at Hovione´s Sete Casas
site. Yield optimization of the final product production step was the problem to solve through the
DMAIC cycle methodology. Over the analysed period (from July 2018 to January 2021), yield had an
average value of 81.83% with a relative range of 11%. It was accounted that, on average and per year,
a full batch throughput is lost due to yield variability. Multivariate data analysis techniques were used
in order to find statistical correlation between input quality attributes and process variables with the
response variables. Impurity H and G present in the input material to the final product process step
were found to negatively impact the yield. The statistical analysis of the process variables revealed that
the crystallization is the most critical to yield operation. The models were re-built considering the final
product´s assay instead of yield as response variable. The contribution of the process variables to the
quality of the product was on the same line as for yield. The process leading to the input intermediary
of the final product process was also analysed taking impurity H and G as response variables. Although
data was only available for 6 production batches, some actions could be taken from the models. The
improvement actions were screened based on their impact and effort and an interactive control sheet
as well as a summary flowchart of the generated process understanding were elaborated in order to
maintain the improvements.
Keywords: Pharmaceutical industry, API production process, DMAIC cycle, Multivariate data
analysis.

1. Introduction
1.1. Motivation

The pharmaceutical industry has the noble mission
of improving the quality of human life.

The International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for
Human Use (ICH) quality guideline Q8 (ICH Q8)
defines quality in the pharmaceutical industry as
”the suitability of either a drug substance or drug
product for its intended use. This term includes
such attributes as the identity, strength, and pu-
rity” [1]. Further consideration can be added to
this definition in terms of reliable clinical perfor-
mance: a quality drug product ”delivers clinical
performance per label claims and does not intro-
duce additional risks due to unexpected contami-
nants” [2]. Integration of these two approaches is
done considering that the clinical parameters that
are crucial to good clinical performance are derived
from the quality attributes of the drug product or
substance [3].

Since the U.S. Food and Drug Administration
(FDA) report publication Pharmaceutical Current

Good Manufacturing Practices for the 21st Century
[4] on 2004, the industry´s approach to quality be-
gan to change from Quality by Testing (QbT) to
Quality by Design (QbD) [5, 6]. In the traditional
paradigm, quality is assured by a series of testing
on raw materials and the final process output. Only
when all specifications are met can the product be
released to the market or proceed to the next step
on the value chain [3, 5]. When all the specifications
are not met, the batch has to be reprocessed or can
even be discarded, leading to failure in meeting cus-
tomer demand. It is estimated that, in the early
two-thousands, 5 to 10% of the total batches pro-
duced in the industry needed reprocessing or were
discarded [7].

Contrary to this traditional notion, comes the
approach developed and coined by the quality pio-
neer, Dr. Joseph Juran, Quality by Design (QbD).
This systematic, scientific and holistic perspective
assures product quality on the design of the process
thus eliminating the need for extensive testing on
the final product [3, 8, 9]. ICH Q8 defines QbD as
”a systematic approach to development that begins
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with predefined objectives and emphasizes prod-
uct and process understanding and process control,
based on sound science and quality risk manage-
ment” [1].

The recent pursuit for quality in the pharmaceu-
tical industry was combined with a quest for pro-
ductivity increase that translates into effective use
of the company‘s resources. Lean and Six Sigma
have proven to succeed on the matter and although
slower than other industries [10, 11, 12], began to
gain ground on the turn of the century in the top
pharmaceutical companies [11, 12].

The successful integration of quality and produc-
tivity, based on a scientific understanding of man-
ufacturing processes, is, nowadays, on the top of
the agenda of pharmaceutical companies [13, 14]
paving the way for operational excellence (OPEX)
programs in an attempt to manage cost, quality and
time while at the same time focusing on customers
needs [15, 16].

The need for a continuous improvement culture in
the pharmaceutical industry, that relies on process
understanding [17], is evident based on the num-
ber of methodologies and programs that have been
launched and pushed by regulatory agencies and ap-
plied (or are still to be) since the beginning of the
21st century [18].

1.2. Topic Overview
Corticosteroids are a class of molecules produced
naturally on the adrenal gland (located above
the kidneys) that have a direct impact on stress
and immune response, protein and carbohydrate
metabolism, blood electrolyte levels, the regulation
of inflammation, and behavior [19]. Since their dis-
covery, corticosteroids have been used in almost ev-
ery area of medicine and administered by nearly ev-
ery route [20]. They are one of the most prescribed
classes of drugs worldwide with an estimated 10 bil-
lion dollars per year in sales [21].

Fluticasone propionate is a corticosteroid that
can be administrated via oral, nasal or topical route
[22]. The route of administration depends on the
condition to treat [22, 23, 24]. Hovione holds the
patent, producing it on Sete Casas installations by
means of a process developed in its R&D center.
The process can be divided into 5 steps, giving each
an isolated intermediate as output.

Figure 1: Process overview displaying the several
steps that lead to the final API product.

The API (further referred to as FP) is produced
by campaign on a multipurpose installation (also in-
tended for APIs of the corticosteroids family). Gen-

eral metrics concerning the production of FP are
given in table 1.

Table 1: Overview metrics for all the steps of the
production process of the FP on a time frame from
2018 to 2020. The standard deviation is also pre-
sented.

Process step
Avg. yield
(%w/w)

Expected yield
(%w/w)

Int 1 94 ± 0.6 92 ± 5
Int 2 102 ± 2.6 99 ± 8
Int 3 106 ± 2.2 107 ± 5
Int 4 103 ± 2.4 101 ± 10
FP 78 ± 15.6 70 ± 28

MFP 94 ± 2.9 95 ± 5

The yield of the production steps can be viewed
as the throughput ratio. To better understand this
variable (%w/w), the following formula should be
considered:

Y ield(%) =
Net weight obtained

Net weight loaded
× 100 (1)

The formula used for yield calculation does not
consider the purity of the final substance obtained
nor the changes in molecular weight of the isolated
intermediates or final product. As such, the ratio
obtained can be higher than 100%, which should
not be considered abnormal.

The uncertainty in the expected yield is increased
moving up on the production train and stopping on
the final API before size reduction (which happens
from FP to MFP). This increase is roughly accom-
panied by an increase in the standard deviation of
the average obtained yield since 2018. High vari-
ability in the yield obtained ultimately leads to inef-
fective use of the production resources (equipment,
personnel, utilities, etc) and so, in accordance with
the production team, this was the primary problem
to target.

The work methodology followed a backwards ap-
proach. The problem is identified on the pro-
cess output and the cause(s) for the problem are
searched firstly on the process that leads to the out-
put and so forth, going backwards. In this way, the
causes for variability on the output parameter will
be spotted, improvement actions will be launched
and tested. Process understanding will be further
developed that leads, due to the implemented im-
provement actions, to an increase in process robust-
ness.

2. Background
2.1. Six Sigma
The term ”Six Sigma” originated from the very core
of the philosophy itself: reduce variability to im-
prove quality. Assuming that a random process
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variable (X) follows a normal distribution with a
designated mean, µ, and standard deviation, σ,
then X ∼ N (µ, σ2). The probability density func-
tion is given by the following equation:

f(x) =
1

σ
√

2π
e−

1
2 (
x−µ
σ ) (2)

The percentage of data that lies within µ± 6σ is
99.9999998%. If the lower and upper specification
limits for a certain process or product parameter
(LSL and USL) are located at ±6σ from the mean,
then the proportion of defectives, i.e. the propor-
tion falling outside the specification limits, would be
0.002 ppm. Allowing for a 1.5σ shift on the mean,
one would get 3.4 ppm defectives (99,9996% within
specification) [25]. This is the metric that the pio-
neers of Six Sigma at Motorola set out to achieve
on all of their processes reflecting the goal of near
perfection in terms of quality [25].

2.2. DMAIC cycle
Every process can be defined, measured, analysed,
improved, and controlled (DMAIC). Six Sigma
views all work as processes and so, all work can
be defined, measured, analysed, improved, and con-
trolled [26]. This sequence of actions is at the
very basis of Six Sigma, the DMAIC improvement
cycle or problem-solving strategy. Underlined in
this problem-solving strategy is the simple equation
[27, 28]:

Y (CTx) = f(X − influencers) (3)

Measurable parameters have to be defined on the
process output that can quantitatively describe the
problem - these are the critical-to-x (CTx) vari-
ables of the project. Here the term ”x” means any
area that has an impact on the customer. Some ex-
amples of areas that are often subject to problem-
solving projects are: quality (CTQ); cost (CTC);
delivery (CTD); safety (CTS) [26]. These response
parameters are determined by a set of variables,
the X-influencers. If these influencing variables (X-
influencers) are controlled, then the process outputs
parameters are controlled as well.

2.2.1 Define Phase

A problem is measured on the output and can
be defined as ”an undesirable situation which may
be solvable by some agent although probably with
some difficulty” [29]. The first step of the DMAIC
problem-solving cycle fundamentally aims to an-
swer the two following questions:

1. What is the problem?

2. How big is the problem?

Together with the strategic goals, these two ques-
tions form the project statement that should help
the project team focus on the core issues and estab-
lish a common starting point [26].

2.2.2 Measure Phase

The second phase of the DMAIC cycle deals mainly
with in-depth process mapping and data collection.
Batch processes originate data that can be arranged
as a 3-way data table as illustrated in figure 2.

Figure 2: Three-way batch process data table.

For chemical synthesis processes in the pharma-
ceutical industry, i.e., batch processes, two cate-
gories of data can be defined: process photograph
and process film. The process photograph data is
represented by the front face of the cube where to
each completed batch a single value of a certain
variable is attributed. It does not give a complete
picture of the batch since it only displays a shot of
the process and therefore cannot be considered for
robust improvement actions derived from the anal-
ysis. The process film data gives a more complete
overview of the process. It consists, for every batch,
of the data time points of variables such as tempera-
ture, pressure, speed of the agitator, and pH among
many more.

2.2.3 Analyse Phase

During the Analyse phase, the data collected during
Measure is statistically analysed. It is during this
phase that process understanding is consolidated:
the X-influencers that mostly impact the identified
Y parameters are signaled and through correlation
analysis it is understood how does the variation in
X influences the behavior of Y.

2.2.4 Improve Phase

The goal of the fourth phase of the DMAIC cycle
can be divided into three consecutive parts.

The first one is to successfully materialize the re-
sults of the statistical analysis conducted on the
previous phase into tangible, concrete, and feasible
actions for problem resolution and process improve-
ment.

Secondly, is idea prioritization. Usually, the effort
to implement the actions that come out of the Anal-
yse phase surpasses the time or resources available
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to implement them and so, prioritization is impera-
tive [30]. This action prioritization can be done by
placing them on an Impact Vs. Effort matrix.

Still under the second objective of the Improve
phase, an action plan with feasible timelines and
accountable people for each task is drawn and is to
be used in the third objective of the Improve phase:
action plan implementation. Only on this stage is
the process actually improved and the status quo is
changed into a revamped version of the process.

2.2.5 Control Phase

Maintaining the improvements achieved is a part
of this final phase of the DMAIC cycle. A rigor-
ous process of documentation of the lessons learned
during the entire project should be performed and
a clear identification of how the improvements can
be replicated and applied to other processes [26].
An often-used practical way for the improvements
sustain is the development of training materials in
order to ensure continued support for the people
involved with the process on a daily basis.

3. Results
3.1. Define
3.1.1 What is the problem?

According to table 1, the expected uncertainty on
the yield of each step leading to any intermediary in
the API production train is increasing moving from
the starting raw material to the final product. The
increase in the uncertainty of the predicted yield is
accompanied by an actual increase in the standard
deviation of the obtained yields. High variability
on any process output parameter can be translated
into a poorly controlled process and lack of robust-
ness, where process robustness can be defined as the
lack of sensitivity of the process outputs to fluctu-
ations in the process inputs and process variables
[9].

Figure 3: Histogram of the yield of FP process from
July 2018 to January 2021 with normal distribution
fitting.

A process in which the throughput is not pre-

dictable leads to an unknown number of batches
needed to satisfy a client´s order that is inevitably
accompanied by biased and uncertain production
planning. High variability in yield also leads to in-
effective use of the company´s resources since the
cost of equipment, personal, raw materials, and util-
ities do not change according to the throughput. By
standardizing and preferably optimizing the yield
of the final step, the process advances to a state of
tighter control, the throughput is increased and the
company resources are used at a higher utilization
rate. As side (but desirable) effects of the success
of the improvement project, process understanding
is gained and a culture of continuous improvement
is fostered among the company.

3.1.2 How big is the problem?

In order to correctly calculate the impact of the
project, a holistic metric has to be identified. As
stated in the previous section, high variability on
yield causes biased and uncertain planning that ul-
timately leads to missed opportunities in terms of
throughput that can then be converted to missed
opportunities in terms of revenue considering an av-
erage price of the final product and that on average,
17 batches of FP are produced per year.

The calculation for the possible impact of the suc-
ceeded project was performed through the following
formula:

MO =

∞∑
n

(SP − Y ieldn)

n
(4)

where SP designates the optimization set-point
considered (all batches on the time frame with the
same yield) and MO the calculated missed oppor-
tunities.

Figure 4: Graphical representation between the av-
eraged missed opportunities in terms of revenue per
year and the optimization set-point. A linear model
(R2=99.15%) and a quadratic one (R2=99.97%)
were fitted.
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Although with a very small difference in the val-
ues of R2, the quadratic model displays a better fit
to the data, showcasing that the missed opportuni-
ties in terms of revenue are exponentially dependent
on the yield optimization. Towards the higher end
of the optimization set-point, the possible gains will
be higher than those of the lower end.

3.2. Measure
During the second phase of the process improve-
ment cycle, a better understanding of the problem
and of the process is done through process mapping.
The IPO diagrams of each step of the production
train were drawn. Regarding data collection, both
process photograph and process film types of data
were collected.

3.2.1 Process Description

The present project leaned over the analysis of FP
and intermediary 4 production steps and so the
response variables that will be present in results
regarding the Analyse phase will be the yield of
FP step and material attributes of intermediary 4.
Only these two processes will now be subject to an
overview description due to confidentiality reasons.

Intermediary 4

Intermediary 3 is dissolved and two inorganic salts
are added. A final and gaseous reactant is added
and reaction takes place. Multiple degasing steps
take place in between the load of the several reac-
tants. Precipitation happens due to antisolvent ad-
dition and cooling. The suspension is then filtered
and dried.

FP

Intermediary 4 is dissolved. Precipitation happens
through solvent evaporation, antisolvent addition
and cooling. The suspension is then filtered and
dried.

3.3. Analyse
This phase of the DMAIC cycle covers all the statis-
tical analysis of the collected data. As stated before,
multivariate data analysis techniques were used as
a more holistic, robust, and feasible approach to
univariate statistics. The results will be presented
following the backwards approach: starting on the
last production step and moving in reverse on the
production train.

All the models that will be presented during the
following section are termed black-box models or
statistical models. Within this framework, systems
are only viewed in terms of their inputs (stimulus)
and outputs (responses), without any knowledge of
their internal workings, and are built based only
on historical or experimental data [31]. Contrary

to white-box models, or mechanistic models, which
are entirely based on mathematically expressed uni-
versal natural laws, black-box models only need
the specification of the system´s inputs and out-
puts and are particularly useful when the system
is poorly understood [31] which is the case for the
chemical-pharmaceutical industry, where systems
are often too complex and the simplifications made
to achieve a mechanistic model often compromise
and surpass the advantages for this type of model-
ing.

3.3.1 FP process step analysis

Quality

The yield on the final step (the response variable
considered) was modeled against the quality data
of the starting raw material of the final step (in-
termediary 4). Two impurities of this intermediate
were removed from the analysis due to the fact that
their values, over the considered production batches
were always much lower than the measuring instru-
ment limit of quantification (LoQ).

Fitting a PLS model to the data, a model with
a cumulative R2 of 0.863 and a cumulative Q2 of
0.793 was obtained. Considerable high values for
both indicators show that the variability on the
yield of FP is almost completely explained by the
variability on the quality data of the input material
for that production step.

Figure 5: PLS model coefficients for the several im-
purities present in the intermediary 4 quality data
against the yield of FP.

Impurity H appears to be the substance that
has the most negative impact on the yield followed
by impurity G and the water content. Impurity
HAPOFM has a small contribution together with
impurity F17H. Impurity 6 chloro has a positive im-
pact on yield. This odd relation is explained in the
fact that this substance is present in the production
process since the beginning, in the purchased ma-
terial, and does not purge in any of the production

5



steps.

Process variables

The quality data of the input material explains
most part of the variability in the yield of the final
step. However, this fact does not exempt a deep
analysis of the process itself as the percentages of
variability explained are not additive and so, an also
very high value for the way the process is being run
can be obtained. As such, process photograph type
of data was analysed. This type of data, as explicit
in the name, only gives a shot of the process, not
the full unfolding of the batch, and is used mainly
to give some initial insights on the process and a
starting point for process film type of data.

Regression analysis (PLS model) was performed
to the data set and although with a very low
percentage of variability explained by the model
(around 32%), some conclusions can be drawn that
were roughly expected with the main one being pre-
sented.

For the antisolvent rate of addition, higher val-
ues of this variable lead to lower yields. This is ex-
pectable as lower rates of addition favor nucleation
contrary to higher rates that favor crystal growth
[32]. Since the amount of antisolvent loaded is spec-
ified in the batch production record and does not
vary from batch to batch, a more in-depth analy-
sis was conducted on the antisolvent addition time.
This duration is specified as CONFIDENTIAL min-
utes in the operations manual but there were some
batches where it was not followed.

Figure 6: Linear and quadratic regression of yield of
the final step against the duration of antisolvent ad-
dition on the batches that the indication for CON-
FIDENTIAL minutes of addition time was not fol-
lowed. For linear regression, R2 equals 0.573 and
for quadratic regression R2 equals 0.652.

As seen in the graph of figure 6, the higher the
time for addition (translated into a smaller addi-
tion rate), the higher the yield. The level profile is
mandatory to analyse in this case since differences
in the addition pattern (which are unknown) are

also crucial to the response variable being consid-
ered. The improvement action that can be taken
out from this analysis is that a level sensor should
be integrated into the reactor where FP crystalliza-
tion takes place.

For the more rigorous and incisive analysis of pro-
cess film type of data, both the crystallization (and
all its successive steps) and the filtration will be the
subject of study. Batch Level Modelling (BLM),
where the differences in between batches on the
variable profiles are modeled against the Y variable
and the impact of such differences on the particular
problem to be solved is uncovered, was performed.

The BLM model (one component model) for the
antisolvent addition step on the crystallization has
a R2 of 0.6497 and a Q2 of 0.459.

Figure 7: Loadings of the first component given
against batch maturity for each variable (pressure
as blue, temperature as yellow, and agitator speed
as red) for the antisolvent addition step in the crys-
tallization of FP process.

Regarding the temperature impact on the yield,
it can be observed that at the beginning of the
operation it rises to be strongly positive (meaning
that high values of temperature lead to high values
of yield) and then decays to be strongly negative.
Two improvements could be proposed based on this
model: firstly, to promote faster heating at the be-
ginning of the operation since up until the middle
of the duration, high temperatures favor high yields
and secondly, to lower the final temperature target
since the impact of the variable is negative, high
temperatures favor low yields. However, the tar-
geted final temperature corresponds to the process
reflux temperature, to which the solvent continues
to evaporate and therefore cannot be changed.

The final crystallization step BLM model (also
a one component model) has the following fitting:
R2 of 0.648 and Q2 of 0.535. A similar amount
of variability explained by the model is obtained to
the antisolvent addition model. Values in this order
of magnitude are considered good and therefore the
models being presented can be considered as robust
models.
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Figure 8: Loadings of the first component given
against batch maturity for each variable (pressure
as blue, temperature as yellow, and agitator speed
as red) for the cooling step in the crystallization of
FP process.

Regarding the temperature´s impact on yield, it
is clear that it stays strongly positive during the
entire cooling operation, apart from the very begin-
ning in which there is an almost vertical ascending
contribution. The cooling rate for this operation
is specified as CONFIDENTIAL and overall, there
are not many differences in the cooling ramp profile
from batch to batch. However, what the loadings of
the model are exhibiting is that, although in some
parts of the operation more evident than others for
example the loading peak at x-axis value around
200, lower cooling rates (but still under the pro-
cess indication of around CONFIDENTIAL) lead
to higher yields. The contribution of temperature is
positive during the final end of the operation, mean-
ing that, higher final temperatures lead to higher
yields.

The filtration step of FP process was also anal-
ysed. A BLM model with three components was
obtained. The cumulative fitting obtained was the
following: R2 of 0.961 and Q2 of 0.768. The Y
variable is explained by both the first and second
components. However, this does not happen to the
third component and so the analysis will be focused
only on the two first. The loadings are presented in
figure 9.

For temperature, according to the first compo-
nent there is a positive and strong relationship dur-
ing all the extent of filtration with yield, mean-
ing that higher temperatures favor yield. That is
not the case with the second component, where, al-
though the yield is more poorly explained than by
the first component, there is a clear weak relation to
the end of the operation with yield. During the fil-
tration, the temperature is not controlled, and the
decreasing trend observed for all batches is due to
the transfer of the washings, which is done between
CONFIDENTIAL and CONFIDENTIAL with no
clearer indication. Attending only to the relation
shown in the first component an improvement ac-
tion to be proposed could be to transfer the wash-
ings during filtration closer to the upper end of the
stipulated process interval.

Figure 9: Loadings of the first component (top, R2
of 0.497 and Q2 of 0.364) and of the second compo-
nent (bottom, R2 of 0.341 and Q2 of 0.165) given
against batch maturity for each variable (pressure
as blue, temperature as yellow, and agitator speed
as red) for the filtration step in the FP process.

All the analysis presented had, as response or Y
variable, the yield of this production step. Since it
is the last chemical step before the final product, it
is important to check if the implementation of such
measures to optimize yield will damage the process
performance regarding quality. This was done by
modelling the same operations but considering the
final products´s assay as response variable. The
findings are that yield and quality go on the same
way, i.e., optimizing throughput performance will
also lead to an optimization of quality performance.

3.3.2 Intermediary 4 process step analysis

The impurities present in the input material to the
FP process step explain most part of the variabil-
ity in the yield which is the primary problem to
be solved on this project. According to the PLS
analysis conducted, impurity H has the strongest
negative impact on yield followed by impurity G.
However, in order to establish concrete improve-
ment actions, a further step back has to be taken
in order to evaluate which sections of the interme-
diary 4 process step are causing the increase in the
identified impurities that lead to a decrease in yield.

Process variables

For the subsequent analysis only 8 production
batches were considered. The process photograph
data for intermediary 4 process step was modeled
agains impurity H. A two component model was ob-
tained with the following cumulative fitting: R2 of
0.981 and Q2 of 0.826. The model coefficients are
presented below in figure 10.
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Figure 10: PLS model coefficients for the process
variables (process photograph type of data) against
impurity H. ”Load RM” is the time took for the
charging of the raw material (intermediary 3); ”1st
degas” is the time took on the first degassing step;
”Load salt1” is the time took to charge the first
inorganic salt; ”2nd degas” is the time took on the
second degassing step and ”Load salt2” is the time
took to charge the second inorganic salt.

Impurity H is formed whenever an oxidizing agent
is present and so, the process step being analysed
has multiple degassing steps prior to the main reac-
tion. The most relevant terms included in the model
are precisely the duration of operations deeply re-
lated to the entrance or exiting of oxygen in the
process vessel, the degassing steps, and the loading
of the reactants: a positive relation of the time took
to load the reactants is observed meaning that more
time spent on loading the reactants yields more im-
purity H content in intermediary 4 and a negative
relation of the degassing duration is observed mean-
ing that less time spent on this operations, more im-
purity H content will be detected. All these findings
are natural since the major motif for the impurity‘s
formation is the presence of an oxidizing agent, in
this case, oxygen.

For impurity G, no set of meaningful terms was
found to be statistically relevant so, no analysis of
the process photograph type of data was conducted
considering impurity G as the response variable.
However, the process film type of data will be anal-
ysed for both impurities, where data was only avail-
able for 6 production batches.

The charge of the first salt was modeled against
impurity H and the following model (two compo-
nents), with the cumulative indicators being pre-
sented, was obtained: R2 of 0.984 and Q2 of 0.887.
Given the very low relevance of the second compo-
nent to the current response variable, only the load-
ings of the first component will be analysed versus
batch maturity.

Figure 11: Loadings of the first component given
against batch maturity for each variable (pressure
as blue, temperature as yellow, and agitator speed
as red) for the charge of the first salt during the
reaction step of intermediary 4 process.

A strong positive relationship of the agitator
speed with impurity H during the entire operation
is verified: high values of agitator speed, during the
entire operation, yield high values of impurity H
in intermediary 4. In regards to temperature, a
negative relation is verified, which is especially rel-
evant (more negative) in the middle of the charge
but never actually gets positive. The temperature is
kept within the process limits (CONFIDENTIAL)
but there is the indication of staying as close as
possible to the lower limit of the interval. Given
the relation presented above, lower values for tem-
perature during the entire operation will increase
the content in impurity H thus decreasing the yield
in FP process and so the indication to stay at the
lower end of the process interval should be changed
in order to target the higher end. The temperature
relationship with impurity H is maintained in the
loading of the second inorganic salt.

Finally, the reaction itself is modeled. A model
with two components and a good fitting was ob-
tained: R2 of 0.952 and Q2 of 0.757. Once again,
the second component is much less relevant to the
response variable than the first component, allowing
it to analyse, on a timely basis, only the loadings for
the first component, as they are presented in figure
12.

Figure 12: Loadings of the first component (R2 of
0.805 and Q2 of 0.561) given against batch maturity
for each variable (pressure as blue, temperature as
yellow and agitator speed as red) for the reaction
step of intermediary 4 process.
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A closer and combined look at the pressure profile
and the loadings for pressure reveals that the peaks
in the variable profile coincide with the peaks in
the loadings. Setting aside the positive peaks on
the loadings, a clear negative and strong relation,
especially at the beginning of the addition of the
main reactant is observed between the variable and
impurity H. In order to decrease impurity H con-
tent in the process output, higher pressures should
be kept during the initial phase of addition. The
main reactant load is done through an auxiliary gas
cylinder which is heated in order to keep its content
in the gaseous state. A straightforward way to in-
crease pressure in the reactant addition would be to
increase the temperature of the gas cylinder. How-
ever, this measure could attach countless safety-
related additional risks that were not studied. The
implementation of this improvement action was left
for the production team to carefully analyse.

The analysis considering impurity G as the re-
sponse variable yielded the same conclusions as the
previous models, for impurity H and therefore are
not presented.

3.4. Improve
After the statistical analysis results translation
into concrete improvement actions, a prioritization
method is imperative to apply in order to sort which
actions will be tackled first and the number of re-
sources needed. This classification is based on two
parameters: impact and effort. The classification
based on the former is empirical, based on process
knowledge that the production team has been gath-
ering through the batches, and is done on a scale
of 1 to 10. The classification based on the latter is
performed according to statistical parameters (R2
and Q2).

The improvement actions that fall in the second
quadrant of the matrix (high impact and low ef-
fort) can be coined ”Quick Wins” and are the ones
that should be tackled first because they yield the
best return based on the effort. The actions placed
on this quadrant were related to the reduction of
impurity H content in intermediary 4 through the
following of the indication to stay at CONFIDEN-
TIAL (for agitator speed) during all pre-reaction
and reaction steps. Considering the increase in yield
of FP, two more actions are placed on the second
quadrant: the action related to faster heating up
until the middle of antisolvent addition, and the
action related to the transfer of the washings (dur-
ing filtration) closer to the higher end of the process
temperature interval.

3.5. Control
The final phase of the DMAIC process improvement
cycle has one major goal: to sustain the improve-
ments. There are several ways of achieving this

goal, however, in this project, only control charts
and a summary flowchart will be used.

3.5.1 Flowchart

After an extensive analysis of the primary prob-
lem (high variability on the FP process yield) with
the root causes being uncovered, it is necessary to
implement frameworks within the organization to
make sure that the process understanding gained
will not be lost. In this line, an internal KPI value
for the FP process yield will be established by the
production team. Whenever a FP batch has a lower
than the KPI yield, an internal investigation is trig-
gered. In order to systematize all the knowledge
created during the project and to serve as an aid-
ing tool for the internal investigations, a flowchart
was elaborated.

3.5.2 Control Charts

One of the most common tools to apply in the fi-
nal phase of DMAIC cycles are the control charts
that are mainly used for process monitoring. The
flowchart for the internal investigations is a great
tool for guiding the process of analysing concluded
batches and spot what was the cause for a deviation
that has already happened. Instead of acting on the
problem, a preventive tool like the control charts is
essential to actively monitor the process and sus-
tain the improvements in real time. In this way,
an interactive Excel file was created, to be filled by
the operators with quick and easy to obtain process
data (like temperatures displayed and starting and
ending times for the operations).

4. Conclusions
Framed on Hovione´s Sete Casas production site
continuous improvement plan, the present work
aimed at the yield optimization of a production
process of a generic corticosteroid API, fluticasone
propionate. Six Sigma´s DMAIC process improve-
ment and the problem-solving cycle was the chosen
methodology to approach the problem. The project
was divided into five separated and clearly defined
phases: define; measure; analyse; improve and con-
trol, which have proven to succeed on continuous
improvement projects. Combined with the DMAIC
cycle, a backwards methodology was applied: af-
ter identifying the problem in the process output
(the high variability on FP process yield), the root
causes will be uncovered going in reverse through
the API production train.

Ranging from July 2018 to January 2021, 40
production batches were included in the analysis.
Over this period, yield took an average value of
81.83% with a standard deviation of 2.22%. The
minimum and maximum values were 77.30% and
86.30% which is 11% of the variable mean. High
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yield variability leads to biased and uncertain pro-
duction planning (especially in a multi-purpose in-
stallation as is the case) and poor use of company
resources since the batch costs do not change with
the throughput obtained.

Only the two last steps on the API production
train were statistically analysed, the step leading
to FP and to intermediary 4. From the models cre-
ated, several improvement actions were drawn and
an Impact Vs. Effort matrix was built. The actions
with low effort and high impact, termed ”Quick
Wins” are related to the agitator speed during the
pre-reaction and reaction step regarding impurity
H as response variable; to transfer the washings,
during FP filtration, closer to the higher end of the
process temperature interval and to promote faster
heating in the first half of antisolvent addition, dur-
ing the FP crystallization both regarding yield as
response variables.

An interval KPI minimum yield value will be es-
tablished by the production team and whenever a
batch performs under the established KPI, an in-
ternal investigation will take place, based on the
process understanding generated.

For future work, in order to increase the robust-
ness of intermediary 4 models, more production
batches should be incorporated since data was only
available for 6. Taking a more holistic approach,
this project should serve as the basis for a demys-
tification of MVDA applied to chemical synthesis
pharmaceutical processes. These processes are very
complex and the black-box statistical approach is
the one to take for process improvement.
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